
CEWES MSRC/PET TR/99-27

Three Parallel Programming Paradigms:
Comparisons on an Archetypal PDE Computation

by

M. Ehtesham Hayder
Constantinos S. Ierotheou

David E. Keyes

05h00399

Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment andTraining (PET)

Supported by Contract Number: DAHC94-96-C0002
Nichols Research Corporation

Views, opinions and/or findings contained in this report are those of the author(s) and should not be con-
strued as an official Department of Defense Position, policy, or decision unless so designated by other
official documentation.

THREE PARALLEL PROGRAMMING PARADIGMS:

COMPARISONS ON AN ARCHETYPAL PDE COMPUTATION

M. EHTESHAM HAYDER�, CONSTANTINOS S. IEROTHEOUy , AND DAVID E. KEYESz

Abstract. Three paradigms for distributed-memory parallel computation that free the appli-
cation programmer from the details of message passing are compared for an archetypal structured
scienti�c computation | a nonlinear, structured-grid partial di�erential equation boundary value
problem | using the same algorithm on the same hardware. All of the paradigms | parallel
languages represented by the Portland Group's HPF, (semi-)automated serial-to-parallel source-to-
source translation represented by CAPTools from the University of Greenwich, and parallel libraries
represented by Argonne's PETSc | are found to be easy to use for this problem class, and all are
reasonably e�ective in exploiting concurrency after a short learning curve. The level of involve-
ment required by the application programmer under any paradigm includes speci�cation of the data
partitioning, corresponding to a geometrically simple decomposition of the domain of the PDE. Pro-
gramming in SPMD style for the PETSc library requires writing only the routines that discretize
the PDE and its Jacobian, managing subdomain-to-processor mappings (a�ne global-to-local index

mappings), and interfacing to library solver routines. Programming for HPF requires a complete
sequential implementation of the same algorithm as a starting point, introduction of concurrency
through subdomain blocking (a task similar to the index mapping), and modest experimentation

with rewriting loops to elucidate to the compiler the latent concurrency. Programming with CAP-
Tools involves feeding the same sequential implementation to the CAPTools interactive paralleliza-
tion system, and guiding the source-to-source code transformation by responding to various queries
about quantities knowable only at runtime. Results representative of \the state of the practice" for a

scaled sequence of structured grid problems are given on three of the most important contemporary
high-performance platforms: the IBM SP, the SGI Origin 2000, and the CRAY T3E.

1. Introduction. Parallel computations advance through synergism in numer-

ical algorithms and system software technology. Algorithmic advances permit more

rapid convergence to more accurate results with the same or reduced demands on pro-

cessor, memory, and communication subsystems. System software advances provide

more convenient expression and greater exploitation of latent algorithmic concurrency,

and take improved advantage of architecture. These advances can be appropriated

by application programmers through a variety of means: parallel languages that are

compiled directly, source-to-source translators that aid in the embedding of data ex-

change and coordination constructs into standard high-level languages, and parallel

libraries that support speci�c parallel kernels. In this paper, we compare all three

approaches as represented by \state-of-the-practice" software on three machines that

can be programmed using message passing.

Unfortunately, the development and tuning of a parallel numerical code from

scratch remains a time-consuming task. The burden on the programmer may be

reduced if the high-level programming language itself supports parallel constructs,

which is the philosophy that underlies the High Performance Fortran [25] extensions

to Fortran. With varying degrees of hints from programmers, the HPF approach

leaves the responsibility of managing concurrency and data communication to the

compiler and runtime system.

The di�culty of complete and fully automatic interprocedural dependence anal-

ysis and disambiguation in a language like Fortran suggests the opportunity for an

�Center for Research on Parallel Computation, Rice University, Houston, TX 77005, USA,
hayder@cs.rice.edu,

yParallel Processing Research Group, University of Greenwich, London SE18 6PF, UK,
c.ierotheou@gre.ac.uk

zComputer Science Department, Old Dominion University and ICASE, Norfolk, VA 23529-0162,
USA, keyes@icase.edu

1

interactive source-to-source approach to parallelization. CAPTools [15] is such an

interactive authoring system for message-passing parallel code.

Parallel libraries o�er a somewhat higher level solution for tasks which are su�-

ciently common that libraries have been written for them. The philosophy underlying

parallel libraries is that for high performance, some expert human programmer must

become involved in the concurrency detection, process assignment, interprocess data

transfer, and process-to-processor mapping | but only once for each algorithmic

archetype. A library, perhaps with multiple levels of entry to allow the application

programmer to employ defaults or to exert detailed control, is the embodiment of

algorithmic archetypes. One such parallel library is PETSc [2], under continuous

expansion at Argonne National Laboratory since 1991. PETSc provides a wide va-

riety of parallel numerical routines for scalable applications involving the solution of

partial di�erential and integral equations, and certain other regular data parallel ap-

plications. It uses message passing via MPI and assumes no physical data sharing or

global address space.

In this study we compare the three paradigms discussed above on a simple problem

representative of low-order structured-grid discretizations of nonlinear elliptic PDEs

| the so-called \Bratu" problem. The solution algorithm is a Newton-Krylov method

with subdomain-concurrent ILU preconditioning, also known as a Newton-Krylov-

Schwarz (NKS) method [21]. Its basic components are typical of other algorithms for

PDEs: (1) sparse matrix-vector products (together with Jacobian matrix and resid-

ual vector evaluations) based on regular multidimensional grid stencil operations, (2)

sparse triangular solution recurrences, (3) global reductions, and (4) DAXPYs. Our

goal is to examine the performance and scalability of these three di�erent program-

ming paradigms for this broadly important class of scienti�c computations.

With relatively modest e�ort, we obtain similar and reasonable performance using

any of the three paradigms, suggesting that all three technologies are mature for static

structured problems. This study expands on [13] by bringing the CAPTools system

into the comparison (an important addition, since the CAPTools approach often edges

out the other two in performance) and by comparisons of the three systems on three

machines, instead of just the IBM SP.

The organization of this paper is as follows. Section 2 describes a model nonlinear

PDE problem and its discretization and solution algorithm. Section 3 discusses the

HPF, CAPTools, and PETSc implementations of the algorithm. The performance

of the implementations is compared, side-by-side, in Section 4, and we conclude in

Section 5. Our target audience includes both potential users of parallel systems for

PDE simulation and developers of future versions of parallel languages, tools, and

libraries.

2. Problem and Algorithm. Our test case is a classic nonlinear elliptic PDE,

known as the Bratu problem. In this problem, generation from a nonlinear reaction

term is balanced by di�usion. The model problem is given by

�r
2
u� �e

u = 0;(2.1)

with u = 0 at the boundary, where � is a constant known as the Frank-Kamenetskii

parameter in the combustion context. The Bratu problem is a part of the MINPACK-

2 test problem collection [1] and its solution is implemented in a variety of ways in the

distribution set of demo drivers for the PETSc library, to illustrate di�erent features

of PETSc for nonlinear problems. There are two possible steady-state solutions to

this problem for certain values of �. One solution is close to u = 0 and is easy to

2

obtain. A close starting point is needed to converge to the other solution. For our

model case, we consider a square domain of unit length and � = 6. We use a standard

central di�erence scheme on a uniform grid to discretize (2.1) as

fij(u) �

�
uij; i; j = 0; n

4ui;j � ui�1;j � ui+1;j � ui;j�1 � ui;j+1 � h
2
�e

ui;j ; otherwise

�
= 0;

where fij is a function of the vector of discrete unknowns uij, de�ned at each inte-

rior and boundary grid point: ui;j � u(xi; yj); xi � ih; i = 0; 1; : : : ; n; yj � jh; j =

0; 1; : : :n, h � 1

n
. The discretization leads to a nonlinear algebraic problem of dimen-

sion (n + 1)2, with a sparse Jacobian matrix of condition number O(n2), asymptot-

ically in n, for �xed �. The typical number of nonzeros per row of the Jacobian is

�ve, with just one in rows corresponding to boundary points of the physical domain.

The algorithmic discussion in the balance of this section is su�cient to understand

the main computation and communication costs in solving nonlinear elliptic boundary

value problems like (2.1), but we defer full parallel complexity studies, including a

discussion of optimal parallel granularities, partitioning strategies, and running times

to the literature, e.g. [11, 23].

Outer Iteration: Newton. We solve f(u) = 0 by an inexact Newton-iterative

method with a cubic backtracking line search [9]. We use the term \inexact Newton

method" to denote any nonlinear iterative method approaching the solution u through

a sequence of iterates u` = u
`�1 + � � �u

`, beginning with an initial iterate u0, where

� is determined by some globalization strategy, and �u
` approximately satis�es the

true Newton correction linear system

f
0(u`�1) �u = �f(u`�1);(2.2)

in the sense that the linear residual norm jjf
0(u`�1) �u`+f(u`�1)jj is su�ciently small.

Typically the RHS of the linear Newton correction equation, which is the negative

of the nonlinear residual vector, f(u`�1), is evaluated to full precision. The inex-

actness arises from an incomplete convergence employing the true Jacobian matrix,

f
0(u), freshly evaluated at u`�1, or from the employment of an inexact or a \lagged"

Jacobian.

An exact Newton method is rarely optimal in terms of memory and CPU resources

for large-scale problems, such as �nely resolved multidimensional PDE simulations.

The pioneering work in showing that properly tuned inexact Newton methods can

save enormous amounts of work over a sequence of Newton iterations, while still

converging asymptotically quadratically, is [8]. We terminate the nonlinear iterations

at the ` for which the norm of the nonlinear residual �rst falls below a threshold

de�ned relative to the initial residual: jjf(u`)jj=jjf(u0)jj < �rel. Our �rel in Section 4

is a loose 0.005, to keep total running times modest in the unpreconditioned cases

considered below, since the asymptotic convergence behavior of the method has been

well studied elsewhere.

Inner Iteration: Krylov. A Newton-Krylov method uses a Krylov method to

solve (2.2) for �u`. From a computational point of view, one of the most important

characteristics of a Krylov method for the linear system Ax = b is that information

about the matrix A needs to be accessed only in the form of matrix-vector prod-

ucts in a relatively small number of carefully chosen directions. When the matrix A

represents the Jacobian of a discretized system of PDEs, each of these matrix-vector

products is similar in computational and communication cost to a stencil update phase

3

of an explicit method applied to the same set of discrete conservation equations. Pe-

riodic nearest-neighbor communication is required to \ghost" the values present in

the boundary stencils of one processor but maintained and updated by a neighboring

processor.

We use the restarted generalized minimum residual (GMRES) [29] method for

the iterative solution of the linearized equation. (Though the linearized operator

is self-adjoint, we do not exploit symmetry in the iterative solver, since symmetry

is too special for general applications and since our implementation of the discrete

boundary conditions does not preserve symmetry.) GMRES constructs an approx-

imation solution x =
P

m

i=1
civi as a linear combination of an orthogonal basis vi

of a Krylov subspace, K = fr
0
; Ar

0
; A

2
r
0
; : : :g, built from an initial residual vec-

tor, r0 = b�Ax
0, by matrix-vector products and a Gram-Schmidt orthogonalization

process. This Gram-Schmidt process requires periodic global reduction operations

to accumulate the locally summed portions of the inner products. We employ the

conventional modi�ed Gram-Schmidt process that reduces each inner product in se-

quence as opposed to the more communication-e�cient version that simultaneously

reduces a batch of inner products. However, in well preconditioned time-evolution

problems and on large numbers of processors, we often prefer the batched version.

Restarted GMRES of dimension m �nds the optimal solution of Ax = b in a

least squares sense within the current Krylov space of dimension up to m and repeats

the process with a new subspace built from the residual of the optimal solution in

the previous subspace if the resulting linear residual does not satisfy the convergence

criterion. The residual norm is monitored at each intermediate stage as a by-product

of advancing the iteration. GMRES is well-suited for inexact Newton methods, since

its convergence can be terminated at any point, with an overall cost that is monoton-

ically and relatively smoothly related to convergence progress. By restarting GMRES

at relatively short intervals we can keep its memory requirements bounded. However,

a global convergence theory exists only for the nonrestarted version. For problems

with highly inde�nite matrices, m may need to approach the full matrix dimension,

but this does not occur for practically desired � in (2.1).

We de�ne the GMRES iteration for �u` at each outer iteration ` with an inner

iteration index, k = 0; 1; : : :, such that �u`;0 � 0 and �u
`;1

� �u
`. We terminate

GMRES at the k for which the norm of the linear residual �rst falls below a threshold

de�ned relative to the initial: jjf(u`�1) + f
0(u`�1) �u`;kjj=jjf(u`�1)jj < �rel, or at

which it falls below an absolute threshold: jjf(u`�1) + f
0(u`�1) �u`jj < �abs. In the

experiments reported below, �rel is 0.5 and �abs is 0.005. (Ordinarily, in an applica-

tion for which it is good preconditioning is easily a�orded, such as this one, we would

employ a tighter �rel. However, we wish to compare preconditioned and unprecondi-

tioned cases while keeping the comparison as uncomplicated by parameter di�erences

as possible.) A relative mix of matrix-vector multiplies, function evaluations, inner

products, and DAXPYs similar to those of more complex applications is achieved with

these settings. The single task that is performed more frequently relative to the rest

than might occur in practice is that of Jacobian matrix evaluation, which we carry

out on every Newton step.

Inner Iteration Preconditioning: Schwarz. ANewton-Krylov-Schwarz method

combines a Newton-Krylov (NK) method with a Krylov-Schwarz (KS) method. If

the Jacobian A is ill-conditioned, the Krylov method will require an unacceptably

large number of iterations. The system can be transformed into the equivalent form

B
�1
Ax = B

�1
b through the action of a preconditioner, B, whose inverse action ap-

4

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

2 2

2

2
2

2

2

3 3

3

33

3

3

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6

7

7

7

7

7

7 8

8

8
8

8

9

9

9

9

A

A

A

A

B

B

B

C

C

C

D

D

E

X

Y

Level u

F 0.6

E 0.557143

D 0.514286

C 0.471429

B 0.428571

A 0.385714

9 0.342857

8 0.3

7 0.257143

6 0.214286

5 0.171429

4 0.128571

3 0.0857143

2 0.0428571

1 0

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

1

1

1

1 1

1

1

12

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

A

A

A

B

B

B

B

C

C
C

D

D

D

E

E

X

Y

Level u

F 0.6

E 0.557143

D 0.514286

C 0.471429

B 0.428571

A 0.385714

9 0.342857

8 0.3

7 0.257143

6 0.214286

5 0.171429

4 0.128571

3 0.0857143

2 0.0428571

1 0

Fig. 2.1. Contour plots of initial condition and converged solution

proximates that of A, but at smaller cost. It is in the choice of preconditioning where

the battle for low computational cost and scalable parallelism is usually won or lost.

In KS methods, the preconditioning is introduced on a subdomain-by-subdomain ba-

sis through conveniently concurrently computable approximations to local Jacobians.

Such Schwarz-type preconditioning provides good data locality for parallel imple-

mentations over a range of parallel granularities, allowing signi�cant architectural

adaptability [12]. In our tests, the preconditioning is applied on the right-hand side;

that is, we solve My = b, where M = AB
�1, and recover x = B

�1
y with a �nal

application of the preconditioner to the y that represents the converged solution.

Two-level Additive Schwarz preconditioning [10] with modest overlap between the

subdomains and a coarse grid is \optimal" for this problem, for su�ciently small �.

(We use \optimal" in the sense that convergence rate is asymptotically independent

of the �neness of the grid and the granularity of the partitioning into subdomains.

For more formally stated conditions on the overlap and the coarse grid required for

this, see [30].) However, for conformity with common parallel practice and sim-

plicity of coding, we employ a \poor man's" Additive Schwarz, namely single-level

zero-overlap subdomain-block Jacobi. We further approximate the subdomain-block

Jacobi by performing just a single iteration of zero-�ll incomplete lower/upper fac-

torization (ILU) on each subdomain during each preconditioner phase. These latter

two simpli�cations (zero overlap and zero �ll) save communication, computation, and

memory relative to preconditioners with modest overlap and modest �ll that possess

provably superior convergence rates. Domain-based parallelism is recognized by archi-

tects and algorithmicists as the form of data parallelism that most e�ectively exploits

contemporary multi-level memory hierarchy microprocessors [7, 24, 32]. Schwarz-

type domain decomposition methods have been extensively developed for �nite dif-

ference/element/volume PDE discretizations over the past decade, as reported in the

annual proceedings of the international conferences on domain decomposition meth-

ods (see, e.g., [4] and the references therein). The trade-o� between cost per iteration

and number of iterations is variously resolved in the parallel implicit PDE literature,

but our choices are rather common and not far from optimal, in practice.

Algorithmic Behavior. Contours of the initial iterate (u0) and �nal solution

(u1) for our test case are shown in Figure 2. Figure 2 contains a convergence history

for Schwarz-ILU preconditioning on a 512 � 512 grid and for no preconditioning on

5

1 10 100 1000
Number of GMRES steps

10
−3

10
−2

10
−1

10
0

L2
 n

or
m

 o
f t

he
 r

es
id

ua
l

ILU preconditioning
No preconditioning

Fig. 2.2. Convergence histories of illustrative unpreconditioned (256 � 256) and global
ILU-preconditioned (512� 512) cases

a quarter-size 256 � 256 grid. The convergence plot depicts in a single graph the

outer Newton history and the sequence of inner GMRES histories, as a function of

cumulative GMRES iterations; thus, it plots incremental progress against a computa-

tional work unit that approximately corresponds to the conventional multigrid work

unit of a complete set of stencil operations on the grid. The plateaus in the resid-

ual norm plots correspond to successive values of jjf(u`)jj, l = 0; 1; : : :. (There are

�ve such intermediate plateaus in the preconditioned case, separating the six Newton

correction cycles.) The typically concave-down arcs connecting the plateaus corre-

spond to jjf(u`�1) + f
0(u`�1) �u`;kjj, k = 0; 1; : : : for each `. By Taylor's theorem

f(u`) � f(u`�1) + f
0(u`�1) �u

` + O((�u`)2), so for truncated inner iterations, for

which �u
` is small, the Taylor estimate for the nonlinear residual norm at the end

of every Newton step is an excellent approximation for the true nonlinear residual

norm at the beginning of the next Newton step. We do not actually evaluate the

true nonlinear residual norm more frequently than once at the end of each cycle of

GMRES iterations (that is, on the plateaus); the intermediate arcs are Taylor-based

interpolations.

3. Parallel Implementations.

3.1. HPF Implementation. High Performance Fortran (HPF) is a set of ex-

tensions to Fortran, designed to facilitate e�cient data parallel programming on a

wide range of parallel architectures [14]. The basic approach of HPF is to provide

directives that allow the programmer to specify the distribution of data across proces-

sors, which in turn helps the compiler e�ectively exploit the parallelism. Using these

directives, the user provides high-level \hints" about data locality, while the compiler

generates the actual low-level parallel code for communication and scheduling that is

appropriate for the target architecture. The HPF programming paradigm provides a

global name space and a single thread of control allowing the code to remain essen-

6

tially sequential with no explicit tasking or communication statements. The goal is

to allow architecture-speci�c compilers to transform this high-level speci�cation into

e�cient explicitly parallel code for a wide variety of architectures.

HPF provides an extensive set of directives to specify the mapping of array ele-

ments to memory regions referred to as \abstract processors." Arrays are �rst aligned

relative to each other and then the aligned group of arrays is distributed onto a rec-

tilinear arrangement of abstract processors. The distribution directives allow each

dimension of an array to be independently distributed. The simplest forms of dis-

tribution are block and cyclic; the former breaks the elements of a dimension of

the array into contiguous blocks that are distributed across the target set of abstract

processors while the latter distributes the elements cyclically across the abstract pro-

cessors.

Data parallelism in the code can be expressed using the Fortran array statements.

HPF provides the independent directive, which can be used to assert that the itera-

tions of a loop do not have any loop-carried dependencies and thus can be executed

in parallel.

HPF is well suited for data parallel programming. However, in order to accom-

modate other programming paradigms, HPF provides extrinsic procedures. These

de�ne an explicit interface and allow codes expressed using a di�erent language, e.g.,

C, or a di�erent paradigm, such as an explicit message-passing code, to be called from

an HPF program.

The �rst version of HPF, version 1.0, was released in 1994 and used Fortran 90

as its base language. HPF 2.0, released in January 1997, added new features to the

language while modifying and deleting others. Some of the HPF 1 features, e.g., the

forall statement and construct, were dropped because they have been incorporated

into Fortran 95. The current compilers for HPF, including the PGI compiler, used

for generating the performance �gures in this paper, support the features in HPF 1

only and use Fortran 90 as the base language.

We have provided only a brief description of some of the features of HPF. A full

description can be found in [14], while a discussion of how to use these features in

various applications can be found in [6, 27, 28].

Conversion of the Code to HPF. The original code for the Bratu problem

was a Fortran 77 implementation of the NKS method of Section 2, written by one of

the authors, which pre-dated the PETSc NKS implementation. In this subsection we

describe the changes made to the Fortran 77 code to port it to HPF, and the reasons

for the changes.

Fortran's sequence and storage association models are natural concepts only on

machines with linearly addressed memory and cause ine�ciencies when the underlying

memory is physically distributed. Since HPF targets architectures with distributed

memories, it does not support storage and sequence association for data objects that

have been explicitly mapped. The original code relied on Fortran's model of sequence

association to redimension arrays across procedures in order to allow the problem

size, and thus the size of the data arrays, to be determined at runtime. The code had

to be rewritten so that the sizes of the arrays are hardwired throughout and there is

no redimensioning of arrays across procedure boundaries. The code could have been

converted to use Fortran 90 allocatable arrays, however, we chose to hardwire the

sizes of the arrays. This implied that the code needed to be recompiled whenever the

problem size was changed. (This is, of course, no signi�cant sacri�ce of programmer

convenience or code generality when accomplished through parameter and include

7

statements and makefiles. It does, however, cost the time of recompilation.)

We mention a few other low-level details of the conversion because they address

issues that may be more widely applicable in ports to HPF. During the process of

conversion, some of the simple do loops were converted into array statements; however,

most of the loops were left untouched and were automatically parallelized by PGI's

HPF compiler. That is, we did not need to use either the forall construct or the

independent directive for these loops | they were simple enough for the compiler

to analyze and parallelize automatically. Along with this, two BLAS library routines

used in the original code, ddot and dnrm2, were explicitly coded since the BLAS

libraries have not been converted for use with HPF codes.

The original solver was written for a system of equations with multiple unknowns

at each grid point. To specialize for a scalar equation we deleted the corresponding

inner loops and the corresponding indices from the �eld and coe�cient arrays. We

thereby converted four-dimensional Jacobian arrays (in which was expressed each

nontrivial dependence of each residual equation on each unknown at each point in

two-dimensional space) into two-dimensional arrays. This, in turn, reduced some

dense point-block linear algebra subroutines to scalar operations, which we inlined.

We also rewrote the matrix multiplication routine to utilize a single do loop in-

stead of nine small loops, each of which took care of a di�erent interior or side bound-

ary or corner boundary stencil con�guration. Some trivial operations are thereby

added near boundaries, but checking proximity of the boundary and setting up multi-

ple do loops are avoided. The original nine loops caused the HPF compiler to generate

multiple communication statements. Rewriting the code to use a single do loop al-

lowed the compiler to generate the optimal number of communication statements even

though a few extra values had to be communicated.

The sequential ILU routine in the original code was converted to subdomain-block

ILU to conform to the simplest preconditioning option in the PETSc library. This was

done by strip-mining the loops in the x- and y-directions to run over the blocks, with a

sequential ILU within each block. Even though there were no dependencies across the

block loops, the HPF compiler could not optimize the code and generated a locality

check within the internal loop. This caused unnecessary overhead in the generated

code. We avoided the overhead by creating a subroutine for the code within the block

loops and declaring it to be extrinsic. Since the HPF compiler ensures that a copy

of an extrinsic routine is called on each processor, no extraneous communication

or locality checks now occur while the block sequential ILU code is executed on each

processor.

The HPF distribution directives are used to distribute the arrays by block. For

example, when experimenting with a one-dimensional distribution, a typical array is

mapped as follows:

real, dimension (nxi,nyi) :: U

!HPF$ distribute (*, block) :: U

...

do i = 1, nxi

do j = 1, nyi

U(i,j) = ...

end do

end do

The above distribute directive maps the second dimension of the array U by block,

i.e., the nyi columns of the array U are block-distributed across the underlying proces-

8

sors. As shown by the do loops above, the computation in an HPF code is expressed

using global indices independent of the distribution of the arrays. To change the

mapping of the array U to a two-dimensional distribution, the distribution directive

needs to be modi�ed as follows, so as to map a contiguous sub-block of the array onto

each processor in a two-dimensional array of processors:

real, dimension (nxi,nyi) :: U

!HPF$ distribute (block, block) :: U

...

do i = 1, nxi

do j = 1, nyi

U(i,j) = ...

end do

end do

The code expressing the computation remains the same; only the distribute directive

itself is changed. It is the compiler's responsibility to generate the correct parallel

code along with the necessary communication in each case.

Most of the revisions discussed above do nothing more than convert Fortran code

written for sequential execution into an equivalent sequential form that is easier for

the HPF compiler to analyze, thus allowing it to generate more e�cient parallel code.

The only two exceptions are: (a) the mapping directives, which are comments (see

code example above) and are thus ignored by a Fortran 90 compiler, and (b) the

declaration of two routines, the ILU factorization and forward/backsolve routines, to

be extrinsic. The HPF mapping directives, themselves, constitute only about 5%

of the line count of the total code.

The compilation command, showing the autoparallelization switch and the opti-

mization level used in the performance-oriented executions, is:

pghpf -Mpreprocess -Mautopar -O3 -o bratu bratu.hpf

3.2. CAPTools Implementation. The Computer Aided Parallelisation Tools

(CAPTools) [15] were initially developed to assist in the process of parallelizing com-

putational mechanics (CM) codes. A key characteristic of CAPTools addresses the

issue that the code parallelization process could not, in general, be fully automated.

Therefore, the interaction between the code parallelizer and CAPTools is crucial dur-

ing the process of parallelizing codes. An overview of the structure of CAPTools is

shown in Figure 3.1.

The main components of the tools comprise:

� A detailed control and dependence analysis of the source code, including the

acquisition and embedding of user supplied knowledge.

� User de�nition of the parallelization strategy.

� Automatic adaptation of the source code to an equivalent parallel implemen-

tation.

� Automatic migration, merger and generation of all required communications.

� Code optimization including loop interchange, loop splitting, and communi-

cation /calculation overlap.

The creation of an accurate dependence graph is essential in all stages of the

parallelization process from parallelism detection to communication placement. As a

result, considerable e�ort is made in the analysis to prove the non-existence of de-

pendencies. This enables the calculation of a signi�cantly higher quality dependence

graph for the parallelization process. CAPTools does not carry out any inlining of

code because it is essential to retain the original form when generating parallel code

9

Browser/Editor Browser/Editor Browser/Editor Browser/Editor Transformations

Knowledge about

input parameters/

 code

 decomposition
 strategy

 Domain
Mask inspection

and editing

Communication

 tuning
Loop optimisation

e.g. routine copy etc

analysis

Interprocedural

dependency Data partitioning

Execution

control mask

generation

Communication

 generation and

 optimisation

Code generation

partitioning

multi-dimensional

Setup for

APPLICATION DATABASE

User knowledge
Parse tree

Control flow
Execution control masks

Dependencies(scalar,array,control)
Communications

Partition definition

USER

F
O

R
T

R
A

N
 S

E
Q

U
E

N
T

IA
L

 C
O

D
E

C
A

P
L

ib
F

O
R

T
R

A
N

 P
A

R
A

L
L

E
L

 C
O

D
E

CAPTools

Fig. 3.1. Overview of CAPTools

to allow continued user recognition. Instead, it performs an interprocedural analysis

[16]. The power of the interprocedural analysis derives from both scalar and array

variables being accurately traced through routine boundaries. Another key factor in

improving the quality of the dependence analysis is the sophisticated, high level inter-

action with the code parallelizer. The parallel code generation process implemented

within CAPTools follows closely the successful techniques developed and exploited in

numerous manual parallelizations. These features enable generation of high quality

parallel code. The current programming model is based on the single program multi-

ple data (SPMD) concept where each processor executes the same code but operates

only on its allocated subset of the original data set. Data is communicated between

processors via message-passing routines and although the distributed memory system

is used as the target system, the use of OpenMP directives makes the generation of

high quality parallel code equally applicable to shared memory systems.

A key component of any knowledge from the user is the speci�cation of the paral-

lelization strategy. The decomposition strategy for structured mesh codes is relatively

simple and involves partitioning the mesh into blocks. The user can also specify a

cyclic, hybrid block-cyclic or domain decomposition-based unstructured mesh parti-

tion. In the latter case, the Jostle tool [31] is used to create the sub-partitions based

upon the mesh topology. In general, the user de�nes the data partitioning by specify-

ing a routine, an array variable within the routine and also an index or subset of the

array. From this initial de�nition CAPTools calculates any side e�ects. The partition-

ing algorithm systematically checks all related array references with the partitioned

information and where possible this partition information is inherited by the related

array. The algorithm proceeds interprocedurally so that information can propagate

from one routine to its callers and called routines. In addition, dimension mapping

10

between routines (e.g. where a 1D array becomes a 2D array in a called routine) is

correctly handled, avoiding the need for any code re-authoring. Often, the selection

of a single array is su�cient to generate a comprehensive data partition. For block

partitions of structured mesh codes, CAPTools generates symbolic variables that de-

�ne low and high limits pre�xed as CAP L and CAP H respectively, where private

copies of these variables are held on every processor to determine the subset of the

data set for a particular array owned by that processor.

The generation of parallel code from an analyzed sequential code that has been

appropriately partitioned is obtained by the following three stages within CAPTools

(the reader is referred to [17] for a more detailed description of the code generation

process):

� The computation of execution control masks for every statement in the code

(to ensure that appropriate statements are activated only by the processor

that owns the data being assigned by this statement or transitively related

statements). Execution control masks that cannot be transformed into loop

limit alterations are frequently generated as block IF masks, where a number

of masks are merged into a single conditional statement.

� The identi�cation, migration, and merger of the required communication

statements. First, the communication requests are calculated indicating the

potential need for data communication. Second, these requests are moved

\upwards" using the control
ow graph in the code being parallelized (in-

cluding interprocedural migration) until they are prevented from further mi-

gration, usually by the assignment of the data item being communicated.

Third, communication requests that have migrated to the same point in the

code are merged by comparing the data space they cover. Finally, the com-

munication statements are generated from the remaining requests and form

a part of the parallel code.

� The generation of parallel source code.

The communication calls that are inserted into the generated parallel code use the

CAPTools communications library (CAPLib [26]). The CAPLib library calls map onto

machine speci�c functions such as CRAY-shmem, or standard libraries such as MPI,

PVM, etc. For example, the cap send and cap receive communication statements

are paired for one-way message passing, the cap exchange is used for two-way paired

exchanges of data, and the cap commutative routine is used for global operations

such as norms and inner products.

The CAPTools parallelization of the Bratu code with an ILU precon-

ditioner using a 2D block partition. The Bratu code requires no re-authoring or

modi�cation of the original sequential code to create a parallel version using CAP-

Tools. The dependence analysis for the Bratu code is straightforward since all array

sizes and problem de�nition parameters are all hand coded into the sequential source

code. This also means that there is little or no need for the user to provide additional

information about the code to assist in the dependence analysis. The dependence

analysis reveals that there are 66 potentially parallel loops out of the 79 loops in

the code. The sequential loops of greatest interest are identi�ed as those in the

ILU-preconditioner routines, as well as the routine that executes the preconditioned

generalized minimal residual method (pcgmr).

The 2D block partition is prescribed using two passes of the CAPTools process,

i.e., data partitioning, execution control mask identi�cation, and communication gen-

eration [19]. In the �rst pass, a 1D block partition is de�ned by the user by selecting

11

the array of Krylov vectors within pcgmr and index 2 (i.e., the y-dimension).

Following the computation of the execution control masks, the communication

calls are generated. For the Bratu code, these can be categorized into three types:

� Exchanges of overlap or halo information, e.g., in the evaluation of nodal

residuals using data owned by a neighboring processor.

� Global reduction operations, e.g., the computation of an L2-norm and a dot

product in routines dnrm2 and ddot, respectively.

� Pipeline communications, e.g., in the routine ilupre the computation for

the preconditioned output vector is pipelined since it has a recurrence in the

partitioned y-dimension.

After the generation of communication calls, the user selects an orthogonal di-

mension in the partitioner window to produce a 2D block partition. The partition in

the second pass is de�ned by selecting the Krylov vector array and index 1 (i.e., the

x-dimension). This is again followed by execution control mask computation and com-

munication generation. The communication is of a similar nature to that generated

in the y-dimension.

The complete interactive parallelization of the Bratu code with a 2D block par-

titioning starting from the original serial code, takes less than ten minutes using a

DEC Alpha workstation.

The CAPTools-generated parallel Bratu code with an ILU precondi-

tioner. The �rst call made in the parallel version of the code is the call to cap init

to create and/or initialize tasks for each processor, as required by the underlying

message-passing interface. Immediately after the problem size is de�ned, two calls to

cap setupdpart are made to de�ne the low and high assignment ranges for each

processor, based on the problem size and the processor topology as de�ned at run-

time. Due to the explicit nature of the code, most of the execution control masks are

transformed from individual statements within a loop to the loop limits, replacing the

original loop limits:

do j2=max(1,cap_lvv),min(nyi,cap_hvv)

do i2=max(1,cap2_lvv),min(nxi,cap2_hvv)

VV(i2,j2) = -W1(i2,j2) + RHS(i2,j2)

enddo

enddo

The variables cap lvv, cap hvv, cap2 lvv and cap2 hvv de�ne the partition range

on the executing processor. The use of the intrinsic functions max and min ensures

that the original loop limits are respected.

In the generated code, the identi�cation and placement of communication calls

are local to each routine. This is somewhat sympathetic to the current HPF/F90

compiler technology, but is perceived as a basic operation within CAPTools since it

does not make use of the interprocedural capability. The parallel Bratu code with an

ILU preconditioner (generated by CAPTools) is similar in appearance to the original

sequential code, therefore, it can be maintained and developed further by the code

authors. Indeed, this point is highlighted by enabling the code author to transform

the ILU preconditioner to a block Jacobi preconditioner by modifying the CAPTools-

generated code. Such an algorithmic change from global ILU to block Jacobi ILU is

identical to the change performed on the HPF version (noted in x3.1) by exploiting

its extrinsic feature and provides both the CAPTools and HPF versions with one

12

of the parallel preconditioners provided as part of the PETSc library.

Modi�cation of the global ILU preconditioner to create a block Jacobi

ILU preconditioner. The CAPTools-generated code is correct; however, the orig-

inal ILU preconditioner contains global recurrences with insu�cient concurrency for

parallel execution. Two alterations to the ILU preconditioner algorithm can be made

to transform the generated parallel code so that it employs a block Jacobi precon-

ditioner. These fundamental changes to the ILU preconditioner algorithm break the

recurrence and remove the dependence on data residing on a di�erent neighboring

processor:

(1) The removal of communication calls within the iluini and ilupre routines

to remove the dependence on data belonging to neighboring processors. For example,

in routine ilupre, the pipeline communications are simply commented out.

c call cap_receive(MX(cap2_lvv,cap_lvv-1),

c & cap2_hvv-cap2_lvv+1,2,cap_left)

c call cap_breceive(MX(cap2_lvv-1,cap_lvv),1,nxi,

c & cap_hvv-cap_lvv+1,2,cap_up)

do 15 j=max(ny1,cap_lvv),min(ny2,cap_hvv)

do 1 i=max(nx1,cap2_lvv),min(nx2,cap2_hvv)

TEMP1=0.0

TEMP2=0.0

TEMP3=0.0

TEMP4=0.0

if(i.gt.nx1) then

TEMP1=QW(i,j)*MX(i-1,j)

endif

if(j.gt.ny1) then

TEMP2=QS(i,j)*MX(i,j-1)

endif

MX(i,j)=AX(i,j)-TEMP1-TEMP2-TEMP3-TEMP4

1 continue

15 continue

c call cap_bsend(MX(cap2_hvv,cap_lvv),1,nxi,

c & cap_hvv-cap_lvv+1,2,cap_down)

c call cap_send(MX(cap2_lvv,cap_hvv)),cap2_hvv-cap2_lvv+1,

c & 2,cap_right)

(2) The alteration of the execution control masks in the routine ILUPRE to ensure

that only data within the assignment ranges are assigned and used. Together with

(1) this has the e�ect of fundamentally altering the algorithm to use a block Jacobi

ILU preconditioner instead of one based on a global ILU factorization.

if(i.gt.max(nx1,cap2_lvv)) then

TEMP1=QW(i,j)*MX(i-1,j)

endif

if(j.gt.max(ny1,cap_lvv)) then

TEMP2=QS(i,j)*MX(i,j-1)

endif

Compilation and execution of the CAPTools-generated code is straightforward

and requires the installation of CAPLib and the capmake and caprun scripts. There

are versions of CAPLib available for all the major parallel systems. The following

generic command is used to compile the Bratu 2D code (with Fortran compiler opti-

13

mizations):

capmake -O bratu_2D

For example, on the IBM SP the -O option is set to -O3 within the capmake

script. Finally, the command to execute the 2D parallel Bratu code is:

caprun -top grid2x2 bratu_2D

where the -top option de�nes the processor topology that the 2D partitioned parallel

code will be mapped onto.

3.3. PETSc Implementation. Our library implementation employs the \Port-

able, Extensible Toolkit for Scienti�c Computing" (PETSc) [2, 3], a freely available

software package that attempts to handle through a uniform interface, in a highly

e�cient way, the low-level details of the distributed memory hierarchy. Examples of

such details include striking the right balance between bu�ering messages and mini-

mizing bu�er copies, overlapping communication and computation, organizing node

code for strong cache locality, allocating memory in context-sized chunks (rather than

too much initially or too little too frequently), and separating tasks into one-time and

every-time subtasks using the inspector/executor paradigm. The bene�ts to be gained

from these and from other numerically neutral but architecturally sensitive techniques

are so signi�cant that it is e�cient in both the programmer-time and execution-time

senses to express them in general purpose code.

PETSc is a large and versatile package integrating distributed vectors, distributed

matrices in several sparse storage formats, Krylov subspace methods, preconditioners,

and Newton-like nonlinear methods with built-in trust region or line search strategies

and continuation for robustness. It has been designed to provide the numerical in-

frastructure for application codes involving the implicit numerical solution of PDEs,

and it sits atop MPI for portability to most parallel machines. The PETSc library

is written in C, but may be accessed from application codes written in C, Fortran,

and C++. PETSc version 2, �rst released in June 1995, has been downloaded over a

thousand times by users around the world. It is believed that there are many dozens of

groups actively employing some subset of the PETSc library. Besides standard sparse

methods and data structures for Ax = b, PETSc includes algorithmic features like

matrix-free Krylov methods, blocked forms of parallel preconditioners, and various

types of time-step control.

Data structure-neutral libraries containing Newton and/or Krylov solvers must

give control back to application code repeatedly during the solution process for eval-

uation of residuals, and Jacobians (or for evaluation of the action of the Jacobian on

a given Krylov vector). There are two main modes of implementation: \call back,"

wherein the solver actually returns, awaits application code action, and expects to be

reinvoked at a speci�c control point; and \call through," wherein the solver invokes

application routines, which access requisite state data via COMMON blocks in conven-

tional Fortran codes or via data structures encapsulated by context variables. PETSc

programming is in the \call through" context variable style.

Figure 3.3 (reproduced from [12]), depicts the call graph of a typical nonlinear ap-

plication. Our PETSc implementation of the method of Section 2 for the Bratu prob-

lem is petsc/src/snes/examples/tutorial/ex5f.F from the public distribution of

PETSc 2.0.22 at http://www.mcs.anl.gov/petsc/. The �gure shows (in white) the

�ve subroutines that must be written to harness PETSc via the Simpli�ed Nonlinear

Equations Solver (SNES) interface: a driver (performing I/O, allocating work arrays,

and calling PETSc); a solution initializer (setting up a subdomain-local portion of

u
0); a function evaluator (receiving a subdomain-local portion of u` and returning

14

Initialization
Application

PETSc

KSPPC

Linear Solver (SLES)

Matrix VectorNonlinear Solver (SNES)

Main Routine

DA

Function Jacobian Post-
Evaluation Evaluation Processing

Fig. 3.2. Schematic of call graph for PETSc on a nonlinear boundary value problem

the corresponding part of f(u`)); a Jacobian evaluator (receiving a subdomain-local

portion of u` and returning the corresponding part of f 0(u`)); and a post-processor

(for extraction of relevant output from the distributed solution). All of the logic of

the NKS algorithm is contained within PETSc, including all communication.

The PETSc executable for an NKS-based application supports a combinatorially

vast number of algorithmic options, re
ecting the adaptive tuning of NKS algorithms

generally, but each option is defaulted so that a user may invoke the solver with

little knowledge initially, study a pro�le of the execution, and progressively tune the

solver. The options may be speci�ed procedurally, i.e., by setting parameters within

the application driver code, through a .petscrc con�guration �le, or at the command

line. The command line may also be used to override user-speci�ed defaults indicated

procedurally, so that recompilation for solver-related adaptation is rarely necessary.

(For instance, it is even possible to change matrix storage type from point- to block-

oriented at the command line.) A typical run was executed with the command:

mpirun -np 4 ex5f -mx 512 -my 512 -Nx 1 -Ny 4 -snes_rtol 0.005

-ksp_rtol 0.5 -ksp_atol 0.005 -ksp_right_pc -ksp_max_it 60

-ksp_gmres_restart 60 -pc_type bjacobi -pc_ilu_inplace -mat_no_unroll

This example invokes (default) ILU(0) preconditioning within a subdomain-block Ja-

cobi preconditioner, for four strip domains oriented with their long axes along the

x direction. For a precise interpretation of the options, and a catalog of hundreds

of other runtime options, see the PETSc release documentation. Further switches

were used to control graphical display of the solution and output �le logging of the

convergence history and performance pro�ling, the printing of which was suppressed

during timing runs.

The PETSc libraries were built with the option BOPT=O. On the SP

(PETSC ARCH=rs6000), this invokes the -O3 -qarch=pwr2 switches of the the xlc

and xlf compilers. The architecture switches for the Origin and the T3E are

PETSC ARCH=IRIX64 and PETSC ARCH=alpha, respectively. Each platform's own na-

15

1 10
NP

1

10

T
im

e

 Execution time on SP2

HPF
CAP
PETSc

1 10
NP

1

10

T
im

e

Execution time on O2K

HPF
CAP
PETSc

1 10
NP

1

10

T
im

e

Execution time on T3E

HPF
CAP
PETSc

Fig. 4.1. Execution time on 256 � 256 grid unpreconditioned case

1 6 11 16
NP

1

6

11

16

S
p

e
e

d
 u

p

Speed up on SP2

HPF
CAPTools
PETSc
Ideal

1 6 11 16
NP

1

6

11

16

S
p

e
e

d
 u

p

Speed up on O2K

HPF
CAPTools
PETSc
Ideal

1 6 11 16
NP

1

6

11

16

S
p

e
e

d
 u

p

Speed up on T3E

HPF
CAPTools
PETSc
Ideal

Fig. 4.2. Speed-up for 256� 256 grid unpreconditioned case

tive MPI was employed as the communication library.

4. Performance Comparisons. To evaluate the e�ectiveness of language and

library paradigms, we compare the demonstration version of the Bratu problem in

the PETSc source-code distribution with algorithmically equivalent versions of this

numerical model and solver converted to message-passing parallelism via CAPTools

and HPF. All performance data reported in this study are measured on an IBM SP and

an Origin 2000 at ASC, and a CRAY T3E at CEWES MSRC. To attempt to eliminate

\cold start" memory allocation and I/O e�ects, for each timed observation, we make

two passes over the entire code (by wrapping a simple do loop around the entire solver)

and report the second result. To attempt to eliminate network congestion e�ects, we

run in dedicated mode (by enforcing that no other users are simultaneously running

on the machine). To spot additional \random" e�ects, we measure each timing four

times and use the average of the four values. We also check for outliers, which our

precautions ultimately render extremely rare, and discard them.

Cases without Preconditioning. We �rst consider computations without pre-

conditioning, as shown in Figures 4.1 and 4.2 on a 256� 256 grid. This is a relatively

small problem and we study scalability on up to 16 processors. In general, execution

times and scalability of all three programming paradigms are comparable with one

16

exception. CAPTools o�ers the best scaling on the SP and T3E, while on the Origin

PETSc scales best. On 16 processors of the SP, CAPTools takes the least amount

of time. Execution times for PETSc and HPF are about 40% and 50% higher, re-

spectively. Speed-up on 16 processors varies between 9 (CAPTools) and 7 (HPF). On

the Origin HPF does not scale beyond 8 processors, evidently burdened by too much

overhead or artifactual communication for a small grid. On 8 processors PETSc takes

the least amount of time and CAPTools is about 14% slower, while the execution

time for HPF is about twice that of PETSc. Computation with PETSc shows super-

linear scaling, which is often an indication of greater cache reuse, as the smaller local

working sets of �xed-size problems eventually drop into cache. Superlinear scaling is

not present for HPF and CAPTools. On 8 processors, the speed-up of CAPTools and

HPF are only about 6.5 and 3, respectively. All three programming paradigms scale

better on the T3E. On 16 processors, the speed-up of the CAPTools-generated code

is greater than 15, while those of HPF and PETSc are about 11.5.

Cases with Preconditioning. We next examine subdomain-block Jacobi ILU

preconditioning, a communicationless form of Additive Schwarz. We consider a 1024�

1024 grid case. Results for a one-dimensional decomposition are shown in Figures 4.3{

4.6. This problem does not �t on smaller number of processors for our few test cases.

Observations for the preconditioned case are similar to those for the unpreconditioned

case. Because this is a larger problem, the earlier poor scaling of HPF on the Origin

is improved; however, both CAPTools and PETSc scale better than HPF on this

platform. Speed-ups on N processors (SN) shown in Figures 4.5 and 4.6 are calculated

as the ratio of excution times on N processors (TN) and 4 processors (T4) as

SN = 4 �
TN

T4
:

Speed-up on 32 processors of the SP varied between 25 (CAPTools) and 23 (HPF).

On 32 processors of the T3E, CAPTools and HPF showed speed-ups of about 29,

while that of PETSc is slightly over 25. On the Origin speed-ups on 32 processors are

about 30, 27 and 20 for CAPTools, PETSc and HPF, respectively. We also compare

the scalability of three computing platforms for each of the programming paradigms

in Figure 4.6. The Origin o�ers the best scaling for PETSc and CAPTools, while the

T3E is the best for HPF.

Memory-scaled results are shown in Figure 4.7. We use a grid of 256 � 256 on

each processor for this study by computing a 512 � 512 problem on 4 processors

and a 1024� 1024 problem on 16 processors. Two-dimensional partitioning is used.

Although amount of useful computation per processor remains the same along each

curve, execution time on 16 processors is higher than that on 4 processors due pri-

marily to communication overheads. Percentage increases range from 20% to 85%.

5. Conclusions. For structured-grid PDE problems, contemporary MPI-based

parallel libraries, automatically generated MPI source code, and contemporary com-

pilers for high-level languages like HPF are easy to use and capable of comparable,

good performance | in absolute walltime and relative e�ciency terms | on multipro-

cessors with physically distributed memory. Given that any such set of comparisons

provides only a snapshot of phenomena a�ected by evolving compiler technology,

evolving application and system software libraries, and evolving architecture, it is un-

wise to attempt to generalize the performance distinctions noted in Section 4. Three

di�erent, well developed approaches to the same problem achieve comparable ends.

17

1 10
NP

1

10

100

T
im

e

Execution time on SP2

HPF
CAP
PETSc

1 10
NP

1

10

100

T
im

e

Execution time on O2K

HPF
CAP
PETSc

1 10
NP

1

10

100

T
im

e

Execution time on T3E

HPF
CAP
PETSc

Fig. 4.3. Execution time on 1024 � 1024 grid preconditioned case for one-dimensional
partitioning

4 12 20 28
NP

4

12

20

28

S
pe

ed
 u

p

Speed up for a fixed size problem

SP2−HPF
SP2−CAP
SP2−PETSc
O2K−HPF
O2K−CAP
O2K−PETSc
T3E−HPF
T3E−CAP
T3E−PETSc
Ideal

Fig. 4.4. Speed-up for 1024� 1024 grid preconditioned case

With respect to extensions to unstructured problems, we remark that PETSc's

libraries fully accommodate unstructured grids, in the sense that the basic data struc-

ture is a distributed sparse matrix. The user is responsible for partitioning and as-

signment. Newton-Krylov-Schwarz solvers in PETSc have been run on unstructured

tetrahedral grid aerodynamics problems on up to 1,024 processors of a T3E with

nearly unitary scaling in computational rates and over 80% e�ciency in execution

time per iteration [22]. Both CAPTools and HPF have begun to be extended to

unstructured problems, as well. Some initial results obtained using CAPTools to

parallelize unstructured mesh codes have been presented in [18].

The target applications must possess an intrinsic concurrency proportional, at

least, to the the intended process granularity. This is an obvious caveat, but requires

emphasis for parallel languages, since the same source code can be compiled for either

serial or parallel execution, whereas a parallel library automatically restricts atten-

tion to the concurrent algorithms provided by the library. No compiler will increase

the latent concurrency in an algorithm; it will at best discover it, and the e�ciency

of that discovery is apparently at a high level for structured index space scienti�c

computations. The desired load-balanced concurrency proportional to the intended

process granularity may always be obtained with the Newton-Krylov-Schwarz fam-

18

4 12 20 28
NP

4

12

20

28

S
p

e
e

d
u

p

Speed up on SP2

HPF
CAP
PETSc
Ideal

4 12 20 28
NP

4

12

20

28

S
p

e
e

d
u

p

Speed up on O2K

HPF
CAP
PETSc
Ideal

4 12 20 28
NP

4

12

20

28

S
p

e
e

d
 u

p

Speed up on T3E

HPF
CAP
PETSc
Ideal

Fig. 4.5. Speed-up on various platforms for 1024� 1024 grid

4 8 12 16 20 24 28 32
NP

4

8

12

16

20

24

28

32

s
p

e
e

d
 u

p

Speed up for PETSc

SP2
O2K
T3E
Ideal

4 8 12 16 20 24 28 32
NP

4

8

12

16

20

24

28

32

s
p

e
e

d
 u

p

Speed up for HPF

SP2
O2K
T3E
Ideal

4 8 12 16 20 24 28 32
NP

4

8

12

16

20

24

28

32

s
p

e
e

d
 u

p

Speed up for CAPTools

SP2
O2K
T3E
Ideal

Fig. 4.6. Speed-up for various programming paradigms for 1024� 1024 grid

ily of implicit nonlinear PDE solvers employed herein through decomposition of the

problem domain.

Under any programming paradigm, the applications programmer with knowledge

of data locality should or must become involved in the data distribution. As on any

message-passing multiprocessor, performance is limited by the ratio of useful arith-

metic operations to remote memory references. The relatively easy-to-precondition,

scalar model problem employed in this paper has a relatively low ratio, compared with

harder-to-precondition, multicomponent problems, which perform small dense linear

algebra computations in their inner loops. It will therefore be necessary to compare

the three paradigms in more realistic settings before drawing broader conclusions

about the paradigm of choice.

Acknowledgements. Piyush Mehrotra of ICASE educated the authors regard-

ing High Performance Fortran, and his major contributions to [13] are leveraged here.

Stephen P. Johnson of the University of Greenwich has been and remains central to

the development of the CAPTools system, and this paper has bene�tted greatly from

discussions with him. The authors are also grateful to C. J. Suchyta, Lisa Burns,

David Bechtold and Diane Smith for graciously and vigilantly accommodating their

requests for dedicated time on DoD MSRC computing platforms. This work was sup-

ported in part by a grant of HPC time from the DoD HPC Modernization Program.

19

4 8 12 16
NP

0

10

20

30

40

50

T
im

e
(s

ec
)

SP2−HPF
SP2−CAP
SP2−PETSc
O2K−HPF
O2K−CAP
O2K−PETSc
T3E−HPF
T3E−CAP
T3E−PETSc

Fig. 4.7. Gustafson scaling for preconditioned case

REFERENCES

[1] B. M. Averick, R. G. Carter, J. J. More, and G. Xue, 1992, The MINPACK-2 Test Prob-

lem Collection, MCS-P153-0692, Mathematics and Computer Science Division, Argonne
National Laboratory.

[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, 1996, PETSc 2.0 User Manual,

ANL-95/11, Mathematics and Computer Science Division, Argonne National Laboratory;
see also http://www.mcs.anl.gov/petsc/.

[3] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, 1997, E�cient Management of
Parallelism in Object-Oriented Numerical Software Libraries, in \Modern Software Tools

in Scienti�c Computing", E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhauser,
pp. 163{202.

[4] P. E. Bjorstad, M. Espedal, and D. E. Keyes, eds., 1998, \Domain Decomposition Methods in

Computational Science and Engineering" (Proceedings of the 9th International Conference
on Domain DecompositionMethods, Bergen, 1996), Domain DecompositionPress, Bergen.

[5] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. E. Melvin, and D. P. Young, 1996, Parallel Newton-
Krylov-Schwarz Algorithms for the Transonic Full Potential Equation, SIAM Journal on
Scienti�c Computing 19:246{265.

[6] B. Chapman, P. Mehrotra, and H. Zima, 1994, Extending HPF for Advanced Data Parallel
Applications, IEEE Parallel and Distributed Technology, Fall 1994, pp. 59{70.

[7] D. E. Culler, J. P. Singh, and A. Gupta, 1998, \Parallel Computer Architecture", Morgan-
Kaufman Press.

[8] R. Dembo, S. Eisenstat, and T. Steihaug, 1982, Inexact Newton Methods, SIAM Journal on
Numerical Analysis 19:400{408.

[9] J. E. Dennis and R. B. Schnabel, 1983, \Numerical Methods for Unconstrained Optimization
and Nonlinear Equations", Prentice-Hall.

[10] M. Dryja and O. B. Widlund, 1987, An Additive Variant of the Alternating Method for the
Case of Many Subregions, TR 339, Courant Institute, New York University.

[11] W. D. Gropp and D. E. Keyes, 1989, Domain Decomposition on Parallel Computers, Impact

of Computing in Science and Engineering 1:421{439.
[12] W. D. Gropp, D. E. Keyes, L. C. McInnes, and M. D. Tidriri, 1997, Parallel Implicit PDE

Computations: Algorithms and Software, in \Parallel Computational Fluid Dynamics '97"
(Proceedings of Parallel CFD'97, Manchester, 1997), A. Ecer, D. Emerson, J. Periaux, and
N Satofuka, eds., Elsevier, pp. 333{334.

[13] M. E. Hayder, D. E. Keyes and P. Mehrotra, 1998, A Comparison of PETSc Library and HPF
Implementations of an Archetypal PDE Computation, Advances in Engineering Software
29:415-424.

[14] High Performance Fortran Forum, 1997, High Performance Fortran Language Speci�cation,
Version 2.0; see also http://www.crpc.rice.edu/HPFF/home.html.

[15] C. S. Ierotheou, S. P. Johnson, M. Cross and P. F. Leggett, 1996, Computer aided paralleliza-
tion tools (CAPTools) - conceptual overview and performance on the parallelisation of
structured mesh codes, Parallel Computing 22:197{226.

[16] S. P. Johnson, M. Cross and M. G. Everett, 1996, Exploitation of Symbolic Information in

20

Interprocedural Dependence Analysis, Parallel Computing 22:197{226.
[17] S. P. Johnson, C. S. Ierotheou and M. Cross, 1996, Automatic Parallel Code Generation For

Message Passing on Distributed Memory Systems, Parallel Computing 22:227{258.
[18] S. P. Johnson, C. S. Ierotheou and M. Cross, 1997, Computer Aided Parallelisation of Un-

structured Mesh Codes, in \Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications 1997", H. Arabnia, et al., eds. pp.
344-353.

[19] E. W. Evans, S. P. Johnson, P. F Leggett and M. Cross, 1998, Automatic Generation of
Multi-Dimensionally Partitioned Parallel CFD Code in a Parallelisation Tool, in \Parallel
Computational Fluid Dynamics '97" (Proceedings of Parallel CFD'97, Manchester, 1997),
A. Ecer, D. Emerson, J. Periaux, and N Satofuka, eds., Elsevier, pp. 531{538.

[20] D. E. Kaushik, D. E. Keyes, and B. F. Smith, 1997, On the Interaction of Architecture and
Algorithm in the Domain-based Parallelization of an Unstructured Grid Incompressible
Flow Code, in \Proceedingsof the 10th InternationalConference on DomainDecomposition
Methods", J. Mandel, et al., eds., AMS, pp. 311{319

[21] D. E. Keyes, 1995, A Perspective on Data-Parallel Implicit Solvers for Mechanics, Bulletin of
the U. S. Association of Computational Mechanics 8(3):3{7.

[22] D. E. Keyes, 1999, How Scalable is Domain Decomposition in Practice?, in \Proceedings of

the 11th International Conference on Domain Decomposition Methods", C.-H. Lai, et al.,
eds., Domain Decomposition Press, Bergen, to appear.

[23] D. E. Keyes and M. D. Smooke, 1987, A Parallelized Elliptic Solver for Reacting Flows, in
\Parallel Computations and Their Impact on Mechanics", A. K. Noor, ed., ASME, pp.
375{402.

[24] D. E. Keyes, D. S. Truhlar, and Y. Saad, eds., 1995, Domain-based Parallelism and Problem
Decomposition Methods in Science and Engineering, SIAM.

[25] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele, and M. E. Zosel, 1994, \The High
Performance Fortran Handbook", MIT Press.

[26] P. F. Leggett, 1998, \CAPTools Communication Library (CAPLib)", Technical report, CMS
Press, Paper No. 98/IM/37.

[27] P. Mehrotra, J. Van Rosendale, and H. Zima, 1997, High Performance Fortran: History, Status
and Future, Parallel Computing 24:325{354.

[28] K. P. Roe and P. Mehrotra, 1997, Implementation of a Total Variation Diminishing Scheme
for the Shock Tube Problem in High Performance Fortran, Proceedings of the 8th SIAM
Conference on Parallel Processing, Minneapolis, SIAM (CD-ROM).

[29] Y. Saad and M. H. Schultz, 1986, GMRES: A Generalized Minimal Residual Algorithm for
Solving Nonsymmetric Linear Systems, SIAM Journal on Scienti�c and Statistical Com-
puting 7:865{869.

[30] B. F. Smith, P. E. Bjorstad andW. D. Gropp, 1996,Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial Di�erential Equations, Cambridge.
[31] C. H. Walshaw, M. Cross and M. G. Everett, 1995, A localised algorithm for optimising un-

structured meshes, International Journal of Supercomputer Applications 9:280{295.
[32] G. Wang and D. K. Tafti, 1999, Performance Enhancement on Microprocessors with Hierar-

chical Memory Systems for Solving Large Sparse Linear Systems, International Journal of

Supercomputer Applications 13:63{79.

21

